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Leibniz’s criticism of the Cartesian physics





One of Leibniz’s numerous contributions to the development of science was his discovery of the notion of kinetic energy m.v2, which he called vis viva - living force. This discovery contributed to a deeper understanding of mechanical processes and was the basis of Leibniz’s criticism of the Cartesian law of conservation of the quantity of motion. The historians of science today generally accept Leibniz’s criticism, and for instance Daniel Garber writes: „It was one of the great blows to the Cartesian program in physics when it was demonstrated that the conservation principle is false. Building on the work of others, Christian Huygens in particular, Leibniz formulated a series of arguments to show the insufficiency of the Cartesian conservation principle.“ (Garber 1992, p. 209). Nevertheless, the situation is not so simple, as many would perhaps believe. Strictly speaking, Leibniz’s „demonstration“ is from the scientific point of view false. Leibniz simply neglected the motion of the Earth. The whole violation of the Cartesian law of conservation of the quantity of motion is due to this omission. Thus Leibniz did not prove anything; he has just neglected one term in the equation and then showed, that this truncated equation did not hold. 


Interestingly enough Leibniz’s above mentioned omission of the Earth’s motion leads to a violation of the Leibnizian law of conservation of living force as well. Strictly speaking, what is conserved is the sum of the kinetic energy of the falling body, plus its potential energy plus the kinetic energy of the Earth. Thus the sum of the first two terms just cannot be constant. We are not aware of this violation, because due to the enormous mass of the Earth its motion caused by the falling body is negligibly small. But neglecting it, we violate the law of conservation of energy. Of course, these comments concern a rather marginal aspect of Leibniz’s mechanics. Nevertheless what we consider worth of mentioning is the fact, that Leibniz’s argument represents a great blow not only to the Cartesian system, but also to his own theory. The fact, that the same arguments refute not only Cartesian physics, but also the Leibnizian one, shows the closeness of these two theories. We believe that despite all antagonism, Leibniz’s theory of motion is in a sense still closely related to Cartesian theory. Thus the aim of our paper is to clarify the relations between these two theories and to examine what they have in common, as well as in what respect they differ. In our analysis we would like to use the method of classification of scientific revolutions (Kvasz 1999) in order to characterize the transition from Descartes to Leibniz (in the field of mechanics, of course) as precisely as possible.


Our paper is divided into four parts. In the first part we present Leibniz’s criticism of Descartes’ theory of motion from his famous paper Kurzer Beweis eines merkwürdigen Fehlers des Descartes (Leibniz 1686). Then we will present a similar criticism of Leibniz’s own theory, and compare both theories with the correct (i.e. Newtonian) description. In the second part we outline briefly the basic ideas of our classification of scientific revolutions, which will offer us tools for a precise description of the transition from Descartes to Leibniz. In the third part of the paper we present a general outline of the development of mechanics, in order to get the background, against which we can discuss the above-mentioned transition. In the last,  fourth, part we will try to argue, that in a specific sense Leibniz is still a Cartesian.


1. Formal reconstruction of the Leibnizian criticism.


An exposition of Leibniz’s mechanics and of his criticism of the Cartesian mechanics may be found in many books. We have chosen the rather standard exposition given by Daniel Garber: „The basic idea behind these arguments is that bodies in motion have an ability to do work by virtue of being in motion; this is the sensible effect of what Leibniz came to call their living force (vis viva). This ability to do work can be compared in different bodies by comparing the actual work they accomplish in consuming that force. What Leibniz chooses to look at is the height to which a body in uniform horizontal motion could raise itself when that horizontal motion is turned to the vertical and consumed in ascent; the height to which a body with a given speed can raise itself from the horizontal is a measure of the force it has by virtue of having that motion, Leibniz argues.... Consider two bodies; let A be one unit in size, and B be four. Now, Leibniz reasons, it takes exactly as much work to raise A four feet as it does to raise B one foot, since one can regard the larger body B as being made up of four smaller bodies, each identical to A, and each of which is being raised one foot. And so, when A and B fall through those respective distances, and their speeds converted to the horizontal, they should have exactly the same force.... Now, Leibniz argues, when A falls, by the Galilean law of free fall it will acquire two degrees of speed, while B acquires one. But if that is the case, then after the fall, A will have two units of quantity of motion while B will have four.... That Cartesian quantity of motion is not conserved then follows directly from the conservation of force...“ (Garber 1995, pp. 310-312).
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The basic problem with Leibniz’s argument is, that it does not take into account the motion of the Earth. Let us rewrite the whole situation in terms of Newtonian mechanics. If we denote the mass and velocity of Earth with capital letters, while small letters will denote the mass and the velocity of the falling body, we obtain for the case of a single body:


	m.v  +  M.V  =  0			1/2m.v2  + 1/2M.V2   =  mgh. 


Here we have supposed, that the motion starts when the body is in the uppermost position of its trajectory. Now, from the first equation we obtain:


				V  =  (v.m/M		


and thus 	


		M.V   =   (m.v 	while		1/2M.V2  =  (1/2m.v2). m/M 


This explains the whole trick of Leibniz’s alleged proof. The momentum of the Earth is of the same order of magnitude as the momentum of the falling body, and therefore by neglecting the motion of the Earth we obtain a violation of the Cartesian law. On the other hand the kinetic energy of the Earth is m/M-times smaller than the kinetic energy of the falling body. Taking into account, that the mass of the Earth is about 6.1024 kilograms, we see that the kinetic energy lost by neglecting the motion of the Earth is of more than 20 orders of magnitude smaller than that of the falling body.


This shows, that Leibniz’s „proof“ is correct only in the limit case of the infinitely heavy Earth. But it is surprising, that the very same limit is necessary also for the Cartesian collision rules. For instance in the famous Rule 4, describing the situation of a lighter body B colliding with a heavier body C which was at rest Descartes asserts, that the lighter body will rebound, while the heavier one will remain at rest. This assertion is, of course, generally wrong, because while rebounding the body B some momentum transfers to the body C, and therefore the body C cannot remain at rest. It can remain at rest only in the limit case, when it is infinitely heavy. Thus we see that in order to make the Cartesian collision rules work, we need the same limit transition as was necessary to make Leibniz’s „proof“ functioning. This indicates, that despite the great conceptual differences between the Leibnizian and the Cartesian systems their conceptions of motion still have something in common. Both of them are only asymptotically correct, and the necessary limit transition is in both cases the same. 


We developed the methods of similar asymptotic analysis of scientific theories into a general approach to the analysis of changes in the development of scientific theories. Our approach is based on a formal reconstruction of the earlier stages of evolution (in this case the Cartesian and Leibnizian theories) in the framework of the later stage (in this case the Newtonian mechanics). Following these reconstructions we examine the limit transitions, with the help of which we can pass from the later stage to the earlier stages. From comparisons of many different cases it turned out, that there are basically four different kinds of such limit transitions, which indicate the existence of four different patterns of change in the development of science. For instance in the above described case the fact, that we need for both, the Cartesian as well as the Leibnizian mechanics, the same limit transition indicates that there is some general pattern which they have in common. Before turning to its reconstruction, we would like to outline briefly the basic ideas of our classification of changes in the development of science.


2. Basic ideas of a classification of scientific revolutions.


In our paper „On classification of scientific revolutions“ (Kvasz 1999) we dealt with the problem of characterizing the patterns of change in science. In order to separate the external and the internal factors influencing scientific change, we introduced the distinction between an epistemic rupture and a scientific revolution. An epistemic rupture encompasses the internal changes of a discipline during the transition from one evolutionary stage to another. Thus an epistemic rupture is a change, which displays itself on the language of the theory, on the formal structure of the arguments used, on the methods and techniques employed. A scientific revolution encompasses the external changes i. e. the changes of the behavior and attitudes of the scientific community.


When a new scientific theory is developed, it has to explain all the relevant facts, which were explained by its predecessors. This opens the possibility of embedding the old theory into the new one (for instance the Newtonian mechanics into the relativistic one). Such embedding usually takes the form of a limit (in the case of the embedding of the Newtonian mechanics into the relativistic one this limit has the form �EMBED Unknown���). We analyzed the development of many different theories and compared the limit transitions, which accompany the embedding of the old theory into the new one in each of the examined cases. We called these limit transitions epistemic ruptures, and it turned out, that there are at least four different kinds of them. For these reasons we distinguished four kinds of epistemic ruptures, namely re-formulation, objectivization, re-presentation and idealization.


The first kind of epistemic ruptures, which we call re-formulations are ruptures of the smallest magnitude. An example of a re-formulation is for instance the discovery of the planet Neptune or a discovery of a new chemical element, which was predicted by the periodic system. In both cases the new object fits nicely into the framework of the theory. Therefore such discoveries require no conceptual change, but nevertheless, they are irreversible. After such a discovery all the reference books have to be rewritten, because the answer to the question of how many planets are there in our solar system, or how many chemical elements are there, changed. That is why we write the dash in the word re-formulation, to distinguish it from the reversible reformulations, which are more common. Another good example of a re-formulation is the introduction of the quantum by Max Planck in 1900. Originally he did not give any conceptual meaning to the quantum and used it just as a formal trick.


The second kind of epistemic ruptures, which we call objectivization are ruptures of a greater magnitude. They consist most often in the introduction of some new kind of objects, as for instance the introduction of the caloricum in the early stages of thermodynamics, the introduction of the flogiston in chemistry, or eather in electrodynamics. In these cases it turned out, that these phenomena could be explained also without the introduction of these new substances. In other cases, as for instance in the case of the introduction of atoms by Dalton, or the introduction of the quantum of light by Albert Einstein in 1905, the new objects remained in science. From the epistemological point of view it is not important, whether the new substances introduced in the process of objectivization remain or are later rejected. What is important is the common pattern of change. Nevertheless, objectivizations are not restricted only to physics, and it is even not necessary that new objects are introduced. What is characteristic of objectivizations is rather a change in the basic ontological assumptions of the theory. An analysis of objectivization in synthetic geometry can be found in „History of geometry and the development of the form of its language“ (Kvasz 1998).


The third kind of epistemic ruptures, which we call re-presentation, are ruptures of a greater magnitude than objectivizations. As examples of re-presentations in physics we can take the Copernican revolution, the emergence of the theory of relativity in 1905 or of quantum mechanics starting from the works of Louis de Broglie of 1924. While in objectivization only the ontology of the theory is changed, the general picture remaining basically the same, in a re-presentation it is the general picture, which undergoes a radical alteration. Thus Copernicus did not introduce new objects into astronomy, but he rather turned the whole picture upside down. Similarly while in the „old quantum mechanics“ quanta were just a special kind of objects introduced by Einstein in order to explain the photoelectric effect, with Broglie the quantum hypothesis is no more restricted to certain kind of objects, but it becomes rather the general principle of representation of all objects. Not only photons have the strange dual character of behaving sometimes as corpuscules and sometimes as waves, but everything does. But again, re-presentations are not bound to physics; similarly they exist also in mathematics, as for instance the Cartesian rupture consisting in the birth of analytic geometry, the Leibnizian rupture consisting in the birth of the differential and integral calculus, the Fregean rupture consisting in the birth of the predicate calculus or the Cantorian rupture consisting in the birth of set theory. These changes are so deep, that it seems, as if in the course of them quite new universes were created. For instance Descartes and Fermat discovered a new way of generating curves according to algebraic formulas. In this way infinitely many new kinds of curves, unknown to the Greeks, appeared. The Greeks could not grasp them, because they lacked the appropriate analytic language, based on the combination of co-ordinate system, algebraic formulas and point-by-point construction. Thus re-presentations change the ways in which objects and formulas are created in mathematics. An analysis of re-presentations in mathematics can be found in „On the Nature of the World of Mathematics“ (Kvasz 2000).


The fourth kind of epistemic ruptures, which we call idealization, are ruptures of the greatest magnitude. Examples of idealizations are the Newtonian rupture in the 17th century, during which physics became an experimental science, and the Euclidean rupture in the 3rdcentury BC, during which mathematics became a deductive science. This kind of rupture separates Aristotelian physics from modern mechanics as well as Egyptian (or Babylonian) from Greek mathematics. The basic difference between Aristotelian and modern physics lies in how they idealize motion.


We believe, that our classification of epistemic ruptures offers an alternative approach to the problem of the „fine structure“ of scientific revolutions raised by Giorello: „Revolutions are not instantaneous events but long-term processes... A revolution is not a single break but a complex sequence of breaks.“  (Giorello 1992, p. 165). If we consider the history of quantum mechanics, we can see a basic development, which is in accordance with the above-described distinctions. Planck introduced in 1900 the hypothesis of quanta as a mere re-formation of the theory of black body radiation. He did not believe that quanta do really exist and so he tried to derive his famous formula without the quantum hypothesis. In 1905 Einstein offered a deeper interpretation of the quantum hypothesis in his theory of photoelectric effect, in which he held quanta for really existing objects. We could say, that Einstein made an objectivization of the quanta. Thus quanta started being considered real objects, besides electrons, protons and other particles. Nevertheless this is not the end of the story. In 1923 de Broglie came up with the idea, that quanta are not special objects (particles of light), existing beside the other material particles (such as electrons or protons), but that every particle has the same wave-corpuscular duality, which was characteristic for the quanta. Thus de Broglie made quanta the basis of a new re-presentation arguing, that quanta are not objects of a special kind, but rather a universal way of description, in which the whole universe should be represented.


 One can see, that our classification of epistemic ruptures is not incidental, but it is in good accordance with the actual historical development of science. It is so, because scientists are conservative, and so they try to solve every anomaly at the smallest expense. The research program defends itself against anomalies by developing a protective belt. First re-formulations are examined. For instance in the case of the anomaly of Uranus’ motion it is sufficient to introduce a further planet into our planetary system and the anomaly is resolved. In this way the conceptual framework of the program can be saved. In the case of more serious anomalies, for instance those posed on mechanics by different bounds, it is necessary to broaden the protective belt and make recourse objectivizations. Thus for example we can turn to Lagrangian mechanics instead of Eulerian. Nevertheless the basic re-presentation of physical processes as mechanical motion of matter in space, as well as the absolute character of the space and the interaction at a distance are preserved. In case of even deeper anomalies, as for instance the case of paradoxes concerning electrodynamics of moving bodies, requires recourse to re-presentations. The new theory of motion, the theory of relativity, was in this way able to neutralize this anomaly by changing the absolute three-dimensional space into a relative four-dimensional space-time, and giving up the concept of force acting at a distance. But even such a deep anomalies were solved inside the protective belt, and so the hard core of physics, based on idealization of motion could be saved.


3. General outline of the development of mechanics.


The classification of scientific revolutions makes it possible to discriminate changes of different magnitudes. In this way it is possible to focus on a pattern of change of a particular magnitude without the interference of alterations on smaller scales. So it is possible to focus on re-presentations of motion, without going into details concerning different objectivizations. From the comparison of the Aristotelian, Galilean, Cartesian and Newtonian representations of motion, it is obvious, that both Aristotelian and Galilean conceptions of motion are geometrical. Aristotle described motion as a geometrical transition. That means, that every body has its proper place, determined by the geometrical structure of the universe, and motion is only a transition from one place of this geometrical structure to another. Galilean theory of motion can be seen as a theory of a geometrical flow. Thus Galileo has replaced the Aristotelian concept of motion as a transition from one place to another by the concept of motion as a flow along a particular trajectory. Nevertheless, the nature of the motion is still given by the geometrical properties of these trajectories, and the global structure of the universe, despite the transition from a geocentric to a heliocentric system, remains still a geometrical order.
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The basic innovation of Descartes was the replacement of a geometric theory of motion by a dynamic one. Motion cannot be understood in terms of geometry, because we need to understand the interactions between bodies. Thus Descartes’ theory of motion can be described as a theory of dynamic transition. I do not want to go into technical details, but Descartes was describing interaction as collision between bodies, i. e. as a transition from the initial state to the terminal state. His theory resembles in some respects the Aristotelian model, but there is also a deep difference between the Aristotelian and the Cartesian concepts of motion. Motion according to Descartes is not a transition from an initial position to a terminal position in a geometrically ordered, static universe. It is rather a transition from an initial state to the terminal state in a dynamic universe. 


Now we can explain Newton’s theory as a similar transformation of Cartesian physics, as Galilean theory was of Aristotelian physics (see the scheme above). Galileo replaced the Aristotelian idea of motion as a direct transition from an initial position to a terminal position by a flow along a trajectory connecting the two positions. Similarly Newton’s theory of motion replaces the Cartesian idea of transition between states by a dynamic flow along a vector field. Newton’s Principia mathematicae philosophia naturalis (1687) is in many respects a response to Descartes’ Principia philosophiae (1644). Newton takes over several aspects of the Cartesian system. But maybe the main difference is, that in the Newtonian system the interaction of bodies is described by a differential equation relating force and change of momentum, while Descartes tried to describe interactions using algebraic equations expressing the conservation of the quantity of motion. Newton tried to unite the Galilean intention of building science on strictly empirical grounds, with the Cartesian insight, that in order to reach a scientific description of nature, we have to transcend the empirically given and introduce universal laws describing changes of states. Newton’s solution lies in the method of empirical testing of the consequences, deduced from universal laws. Newtonian physics can be characterized as a methodological synthesis of the Galilean and Cartesian elements. Therefore the idealization, on which modern science is based, has three components. The first of them is the Galilean instrumental idealization, consisting in the replacement of phenomena by mathematical quantities. The second one is the Cartesian ontological idealization, consisting in the replacement of the ontological unity of various aspects of an object by a mathematical representation of its state. And finally the third is the Newtonian methodological idealization consisting in replacement of the relations of causes and effects by the mathematical representation of these relations in the form of a differential equation.


4. The relation between the Cartesian and Leibnizian theories of motion.


Our formal reconstruction of the Leibnizian „proof of an important mistake of Descartes“ in the first part of this paper disclosed a rather surprising similarity between Cartesian and Leibnizian mechanics. Despite Leibniz’s criticism of the Cartesian position, his theory is in a sense on the same level, because it is based on asymptotic assumptions of the same kind. If we embed these asymptotic reconstructions into the general framework of the classification of scientific revolutions, we can see, that Cartesian and Leibnizian mechanics have a common representation of motion as dynamic transition, while they differ in objectivization of the specific quantity, which is conserved in the process of such a transition. They both describe motion as a dynamic transition, that is a transition from an initial to a terminal state. They differ only in how to relate these two states. Descartes thought that the initial and the terminal states must have the same quantity of motion while Leibniz replaced the quantity of motion by his vis viva. Thus our suggestion is to see Leibnizian mechanics as an objectivization of living force in the framework of the Cartesian representation of motion. So the differences between these two conceptions of motion are only conceptual. On the more fundamental level of representations they share the common idea of understanding mechanical interactions as a dynamic transitions.
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